Low-Carbon Hydrogen Demand Could Reach 50 Mtpa By 2050

Potential low-carbon hydrogen demand from the global refining sector could reach 50 million tons per annum by 2050, says global research and consultancy group Wood Mackenzie.
Oil refining is one of the largest markets for hydrogen, accounting for about 32 Mtpa or 30-35% of global hydrogen demand in 2020. Hydrotreating and hydrocracking are the major refinery processes consuming over 90% of hydrogen in the refining sector, and they are used to reduce sulfur from finished products, and to increase yield of transport fuels, respectively.
However, more than 65% of hydrogen demand in refining is met by hydrogen supplied as a by-product from catalytic reformers and ethylene crackers; this is unlikely to be replaced by low-carbon hydrogen. Any hydrogen shortfall is met by on-purpose production from gas-based steam methane reforming and coal, together accounting for about 32% of refinery hydrogen demand.
“Low-carbon hydrogen has the potential to replace on-purpose hydrogen as a feedstock if low-carbon hydrogen becomes cost competitive and policy support develops over time. Potential global market size for low-carbon hydrogen in this segment could be up to 10 Mtpa by 2050 delivering a 10% or 100 Mtpa reduction in overall scope 1 and 2 global refinery carbon emissions,” Wood Mackenzie research director Sushant Gupta said.
“But the real game-changer is in replacing fossil fuels in combustion applications to generate heat and steam. This will provide a larger market for low-carbon hydrogen in refining with potential market size reaching up to 40 Mtpa by 2050, and up to 300 Mtpa or about 25% reduction in carbon emissions. As such, total potential demand for low-carbon hydrogen in refining could be up to 50 Mtpa by 2050,” he added.
For further decarbonization, refiners will have to consider additional low-carbon technologies such as electric heating, carbon, capture and storage on main carbon emitting units and biomass gasification. Refiners will have to deploy renewable power and use low-carbon feedstocks and products. A combination of these solutions is required to solve this complex problem.
Both lower costs and high carbon prices are needed to make low-carbon hydrogen competitive to on-purpose fossil fuel-based hydrogen. Cost is important because hydrogen production is responsible for between 10% and 25% of refiners’ variable opex. In addition, a high carbon price and related emissions penalty could become the main driver of shifting away from fossil fuel-based hydrogen to low-carbon hydrogen.
At current high and volatile gas/LNG prices and in the aftermath of the Ukraine war, green hydrogen is cheaper than fossil fuel-based grey hydrogen. So, there is market opportunity to diversify hydrogen supply sources to reduce emissions and support energy security.
In the case of combustion applications, higher heating value and lower emissions make low-carbon hydrogen an attractive alternative. Although combustion provides a bigger market, low-carbon hydrogen needs to achieve a much lower cost, or a much higher carbon price is needed to compete in the combustion sector than that required to compete with on-purpose hydrogen.
A much higher carbon price of $100/t to $150/t would be required in the early 2030s to make low-carbon hydrogen compete in the refinery combustion sector, assuming commodity prices return to levels driven by long-term fundamentals. Alternatively, green hydrogen cost must be sub-$1.50 per kilogram to compete with gas and fuel oil combustion in the longer term.
“In addition to falling costs for low-carbon hydrogen, higher carbon prices, financial incentives and stronger policy support will be necessary to accelerate adoption by the refining sector. Dedicated country hydrogen roadmaps will help grow low-carbon hydrogen’s penetration across many sectors.
“From costs and emissions perspective, a leap towards green hydrogen rather than blue is more likely in refining in the longer term. However, countries with low-cost gas resources and CO2 sequestration capacity will have the opportunity to enter the blue hydrogen market. Replacement economics for low-carbon hydrogen is hugely dependent upon coal, gas, carbon, and renewable power prices and hence, very refinery site and country specific,” Gupta said.
To contact the author, email username.eldina@gmail.com
WHAT DO YOU THINK?
Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.
- Europe Set to Start Winter Seriously Short of Diesel
- Brent-WTI Oil Price Spread at Highest Point Since 2014
- Noble Corp. Floater Fleet Fully Contracted In Second Quarter
- U.S. Energy Production Noted Record Drop In 2020
- Wind Industry Feeling Tight Squeeze On Supply Chain
- Diamond Offshore Rakes In $610 Mn In Second Quarter Rig Deals
- Pioneer CEO Says Tax Bill May Crush USA Mom-N-Pop Oil Drillers
- Analyst Gives Year-End Oil Price Warning
- What Fueled Oil Price Downtrend?
- Oil Prices Drop to Levels Not Seen in Months
- OPEC+ Flags Severely Limited Availability of Excess Capacity
- USA Senate Passes Inflation Reduction Act
- Oil Supermajors Continue to Hold Back on Investment
- Renewables Picking Up, E&P Firms Pen 82.5 GW Of Deals In 1H 2022
- Hess Encouraged By Huron Well In Gulf Of Mexico
- High-Impact Exploration Up With Most Wells Expected Since 2019
- Oil Majors Make Leadership Changes
- Ships Seized in Mariupol
- Oil Prices Hit Levels Not Seen Since April
- Over A Quarter Of Turbines Installed On Formosa 2 Wind Farm
- Saudis to Hike Oil Price to Record
- USA Diesel and Gasoline Demand Slip
- Texas Wind Power Failing When State Needs It Most
- Pantheon Hits Multiple Oil Reservoirs At Second Alkaid Well
- Analyst Gives Year-End Oil Price Warning
- Guyana Just Keeps On Giving As Exxon Makes Two More Discoveries
- American Drivers Grab $3.11-a-Gallon Gas in Mexico